Abstract

Adaptive traffic control systems (ATCS) can play an important role to reduce traffic congestion in urban areas. The main challenge for ATSC is to determine the proper signal timing. Recently, Deep Reinforcement learning (DRL) is used to determine proper signal timing. However, the success of the DRL algorithm depends on the appropriate reward function design. There exist various reward functions for ATSC in the existing research. In this research, a comprehensive analysis of the widely used reward function is presented. The pros and cons of various reward algorithms are discussed and experimental analysis shows that multi-objective reward function enhances the performance of ATSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.