Abstract
SummaryGenetic reassortment plays a vital role in the evolution of the influenza virus and has historically been linked with the emergence of pandemic strains. Reassortment is believed to occur when a single host - typically swine - is simultaneously infected with multiple influenza strains. The reassorted viral strains with novel gene combinations tend to easily evade the immune system in other host species, satisfying the basic requirements of a virus with pandemic potential. Therefore, it is vital to continuously monitor the genetic content of circulating influenza strains and keep an eye out for new reassortants. We present a new approach to identify reassortants from large data sets of influenza whole genome nucleotide sequences and report the results of the first ever comprehensive search for reassortants of all published influenza A genomic data. 35 of the 52 well supported candidate reassortants we found are reported here for the first time while our analysis method offers new insight that enables us to draw a more detailed picture of the origin of some of the previously reported reassortants. A disproportionately high number (13/52) of the candidate reassortants found were the result of the introduction of novel hemagglutinin and/or neuraminidase genes into a previously circulating virus. The method described in this paper may contribute towards automating the task of routinely searching for reassortants among newly sequenced strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.