Abstract

New particle formation (NPF) is a critical source of particles and cloud condensation nuclei, yet there are scarce vertically-resolved measurements addressing NPF across different seasons in marine regions. This study leverages a multi-season set of airborne data from the NASA ACTIVATE mission between 2020 and 2022 to examine NPF characteristics over the northwest Atlantic ranging from the polluted U.S. East Coast to as far downwind (>1000 km) as Bermuda. Using the number concentration ratio above 3 and 10 nm (N3:N10) as a NPF indicator, we observe the highest ratios in the coldest months and comparable ratios over Bermuda relative to the U.S. East Coast. Within seasons, the highest and lowest ratios are found immediately above cloud tops and at the lowest possible flight altitudes (∼150 m above sea level), respectively. The ratio of (N3-N10)/N3 ranges from 0.16 to 0.29 depending on altitude, proximity to clouds, and season. The N3:N10 and (N3-N10)/N3 ratios increase with altitude up to as high as 9 km, with a case study showing favorable conditions around relatively thicker and precipitating cloud systems presumably due to high actinic fluxes and reduced aerosol surface area. Regression modeling reveals that increased N3:N10 is influenced most by reductions in temperature, relative humidity, and aerosol surface area. This work emphasizes the importance of both NPF in remote marine regions like Bermuda and vertical heterogeneity that exists in its contribution to aerosol and cloud condensation nuclei number budgets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.