Abstract

Photoluminescence (PL) emission is an intriguing characteristic displayed by atomically precise d10 metal nanoclusters (NCs), renowned for their meticulous atomic arrangements, which have captivated the scientific community. Cu(I) NCs are a focal point in extensive research due to their abundance, cost-effectiveness, and unique luminescent attributes. Despite similar core sizes, their luminescent characteristics vary, influenced by multiple factors. Progress hinges on synthesizing new NCs and modifying existing ones, with postsynthetic alterations impacting emission properties. The rapid advancements in this field pose challenges in discerning essential points for excelling amidst competition with other d10 NCs. This Perspective explores the intricate origins of PL emission in Cu(I) NCs, providing a comprehensive review of their correlated structural architectures. Understanding the mechanistic origin of PL emission in each cluster is crucial for correlating diverse characteristics, contributing to a deeper comprehension from both fundamental and applied scientific perspectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call