Abstract
Meta-heuristics such as simulated annealing, genetic algorithms and tabu search have been successfully applied to many difficult optimization problems for which no satisfactory problem specific solution exists. However, expertise is required to adopt a meta-heuristic for solving a problem in a certain domain. Hyper-heuristics introduce a novel approach for search and optimization. A hyper-heuristic method operates on top of a set of heuristics. The most appropriate heuristic is determined and applied automatically by the technique at each step to solve a given problem. Hyper-heuristics are therefore assumed to be problem independent and can be easily utilized by non-experts as well. In this study, a comprehensive analysis is carried out on hyper-heuristics. The best method is tested against genetic and memetic algorithms on fourteen benchmark functions. Additionally, new hyper-heuristic frameworks are evaluated for questioning the notion of problem independence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.