Abstract
Adapting to drifting data streams is a significant challenge in online learning. Concept drift must be detected for effective model adaptation to evolving data properties. Concept drift can impact the data distribution entirely or partially, which makes it difficult for drift detectors to accurately identify the concept drift. Despite the numerous concept drift detectors in the literature, standardized procedures and benchmarks for comprehensive evaluation considering the locality of the drift are lacking. We present a novel categorization of concept drift based on its locality and scale. A systematic approach leads to a test bed of 2760 data stream benchmarks, reflecting various difficulty levels following our proposed categorization. We conduct a comparative assessment of 9 state-of-the-art drift detectors across diverse difficulties, highlighting their strengths and weaknesses for future research. We examine how drift locality influences the classifier performance and propose strategies for different drift categories to minimize the recovery time. Lastly, we provide lessons learned and recommendations for future concept drift research. Our benchmark data streams and experiments are publicly available at https://github.com/gabrieljaguiar/locality-concept-drift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.