Abstract
In this paper, we propose three algorithms for placement of access points (APs) for the purpose of data transportation via train-to-wayside (T2W) communications along a rail network. The first algorithm is proposed to find the minimum number of APs so that the path-loss (PL) does not exceed a desired threshold. Through the second algorithm, the most optimal places for a desired number of APs are determined so that the average PL is minimum. The goal of the third algorithm is to determine the required number and optimal places of APs in a rail network. Furthermore, we propose a model to consider the effects of changes of communication characteristics on the efficiency of the network in different environments. Through such model, the algorithms proposed for placement of APs can be used in different railway scenarios. The proposed algorithms are validated through extensive simulations in Sydney Trains of Australia. The simulation results show that the proposed approach can improve the efficiency of the system at least 21% and up to 165% within 10 different scenarios. We also show that we can approximately transmit over 250 Gigabit data through T2W communications over common WiFi networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.