Abstract

The lattice of the CERN Large Hadron Collider (LHC) will contain 384 Short Straight Section (SSS) units, one in every 53 m half-cell. The SSS is composed of a twin aperture high-field superconducting quadrupole and of two combined-function corrector magnets operating in pressurized helium at 1.9 K. The SSS cryostat contains also a barrier for sectorisation of the insulation vacuum. The vacuum barrier is mounted between the helium vessel and the vacuum enclosure. Its functions are to limit the extent of eventual helium leaks and to facilitate the leak detection and the pumping-down from atmospheric pressure. During installation of the LHC, the vacuum barrier permits independent testing of the half-cells, thus enabling higher installation rates. In parallel to a conventional barrier made out of austenitic stainless steel, a barrier of composite material was developed, taking advantage of the lower thermal conductivity of glass fibre reinforced epoxy resin, and with the aim of reducing costs for LHC. The thermo-mechanical design together with the conception and the moulding techniques used for the manufacture of the prototype are described. Bonding techniques for the leak tight stainless steel composite interfaces are presented and test results shown. Results on the mechanical performance and on the helium tests carried out on the prototype are given.KeywordsLarge Hadron ColliderLeak DetectionInsulation VacuumMoulding TechniqueLeak TightnessThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.