Abstract

Dereverberation is often performed directly on the reverberant audio signal, without knowledge of the acoustic environment. Reverberation time, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$T_{60}$</tex-math></inline-formula> , however, is an essential acoustic factor that reflects how reverberation may impact a signal. In this work, we propose to perform dereverberation while leveraging key acoustic information from the environment. More specifically, we develop a joint learning approach that uses a composite <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$T_{60}$</tex-math></inline-formula> module and a separate dereverberation module to simultaneously perform reverberation time estimation and dereverberation. The reverberation time module provides key features to the dereverberation module during fine tuning. We evaluate our approach in simulated and real environments, and compare against several approaches. The results show that this composite framework improves performance in environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call