Abstract

State convergence is a novel control algorithm for bilateral teleoperation of robotic systems. First, it models the teleoperation system on state space and considers all the possible interactions between the master and slave systems. Second, it presents an elegant design procedure which requires a set of equations to be solved in order to compute the control gains of the bilateral loop. These design conditions are obtained by turning the master-slave error into an autonomous system and imposing the desired dynamic behavior of the teleoperation system. Resultantly, the convergence of master and slave states is achieved in a well-defined manner. The present study aims at achieving a similar convergence behavior offered by state convergence controller while reducing the number of variables sent across the communication channel. The proposal suggests transmitting composite master and slave variables instead of full master and slave states while keeping the operator&#x02BC force channel intact. We show that, with these composite and force variables, it is indeed possible to achieve the convergence of states in a desired way by strictly following the method of state convergence. The proposal leads to a reduced complexity state convergence algorithm which is termed as composite state convergence controller. In order to validate the proposed scheme in the absence and presence of communication time delays, MATLAB simulations and semi-real time experiments are performed on a single degree-of-freedom teleoperation system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call