Abstract

A new composite Runge–Kutta (RK) method is proposed for semilinear partial differential equations such as Korteweg–de Vries, nonlinear Schrödinger, Kadomtsev–Petviashvili (KP), Kuramoto–Sivashinsky (KS), Cahn–Hilliard, and others having high-order derivatives in the linear term. The method uses Fourier collocation and the classical fourth-order RK method, except for the stiff linear modes, which are treated with a linearly implicit RK method. The composite RK method is simple to implement, indifferent to the distinction between dispersive and dissipative problems, and as efficient on test problems for KS and KP as any other generally applicable method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.