Abstract

Aiming at the problem that the trajectory tracking error of flexible lower limb exoskeleton robot is too large under the condition of external disturbance and parameters uncertainty, a composite position control method based on second-order sliding mode control was proposed. Firstly, the flexible lower limb exoskeleton robot is modeled by Lagrange function. Secondly, considering that the system is affected not only by matched disturbance but also by unmatched disturbance, two finite time state observers are used to observe and compensate the two disturbances in real time. The super-twisting method is employed in the position control section to ensure that the trajectory tracking error of the knee joint converges to zero in finite time. Finally, the Lyapunov function proves the stability of the suggested control technique. The experimental findings reveal that the suggested control approach has a better trajectory tracking effect and resilience than classic PD control and sliding mode control, indicating its superiority.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call