Abstract

Biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as a nanofibrous film by electrospinning and composited with hydroxyapatite (HAp) by soaking in simulated body fluid. Compared with a PHBV cast (flat) film, the electrospun PHBV nanofibrous film was hydrophobic. However, after HAp deposition, both of the surfaces were extremely hydrophilic. The degradation rate of HAp/PHBV nanofibrous films in the presence of polyhydroxybutyrate depolymerase was very fast. Nanofiber formation increased the specific surface area and HAp enhanced the invasion of enzyme into the film by increasing surface hydrophilicity. The surface of the nanofibrous film showed enhanced cell adhesion over that of the flat film, although cell adhesion was not significantly affected by the combination with HAp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call