Abstract
We report the experimental realization of a composite microcavity system, in which negatively-charged nitrogen vacancy (NV) centers in diamond nanopillars couple evanescently to whispering-gallery modes (WGMs) in a deformed, non-axisymmetric silica microsphere. We show that the deformed microsphere can feature an evanescent decay length four times larger than that of a regular silica microsphere. With the enhanced evanescent coupling, WGMs can in principle couple to NV centers that are 100 to 200 nm beneath the diamond pillar surface, providing a promising avenue for exploring evanescently-coupled cavity QED systems of NV centers in ultrahigh purity diamond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.