Abstract

In this paper, we devise a novel method to solve Kawahara‐type equations numerically. In this novel method, for spatial discretization, we use delta‐shaped basis functions and generate differentiation matrices for spatial derivatives of the Kawahara‐type equations. For discretization of temporal variable, we utilize a high‐order geometric numerical integrator based on Lie group methods. For illustration of efficiency of the suggested method, we consider some test problems. We calculate errors and make some comparisons with other results that exist in literature. We also report changes in conservation laws during numerical simulations, and we indicate that the suggested method can preserve the conservation laws pretty good. Outcomes of numerical simulations indicate that the suggested method in this paper is reliable and effective for nonlinear partial differential equations (PDEs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.