Abstract
This work shows evidence of conventional liquid and polymer molecules doping macroscopic yarns made up of carbon nanotubes (CNT), an effect that is exploited to monitor polymer flow and thermoset curing during fabrication of a structural composite by vacuum infusion. The sensing mechanism is based on adsorption of liquid/polymer molecules after infiltration into the porous fibers. These molecules act as dopants that produce large changes in longitudinal fiber resistance, closely related to the low density of carriers near the Fermi level of bulk samples of CNT fibers, reminiscent of their low‐dimensional constituents. A 25% decrease in fiber resistance upon exposure to electron–donor radicals formed during epoxy vinyl ester polymerization is shown as an example. At later stages of curing the matrix undergoes shrinkage and applies a compressive stress to the fibers. The resulting sharp increase in electrical resistance provides a mechanism for detection of the matrix gel point. The kinetics of resistance change during polymer ingress are related to established models for macromolecular adsorption, thus also enabling prediction of polymer flow. This is demonstrated for vacuum infusion of a 150 cm2 glass fiber laminate composite, with the CNT fiber yarns giving accurate prediction of macroscopic resin flow according to Darcy's law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.