Abstract

Mechanical deformable vocal fold replicas are an inherent part of physical studies of the fluid–structure interaction underlying vocal folds auto-oscillation during voiced speech sound production. In this context, the current work considers the linear stress–strain characterization of a pressurized latex tube vocal fold replica. An imaging approach is developed to measure the effective low-strain linear Young’s moduli along the streamwise (49[Formula: see text]kPa) and transverse main auto-oscillation (44[Formula: see text]kPa) directions. Next, a composite analogy is proposed to model the replica’s structure as an equivalent de-homogenized multi-layer material with two, three or four layers. This way equivalent low-strain Young’s moduli of each equivalent single layer can be estimated. Both measured effective and modeled equivalent low-strain Young’s moduli are within the range up to 65 kPa associated with human vocal folds. Resulting equivalent composite representations are of interest for the future design of pressurized latex tube replicas. This is illustrated considering the influence of outer layer latex properties on the overall estimate of the effective Young’s modulus. The proposed analogy is thus efficient in contributing to the direct comparison, in terms of low-strain elastic behavior, between replicas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call