Abstract

Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 Å X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7XAC2622) and its interaction with VirB9. NMR solution studies show that residues 27–41 of the disordered flexible N-terminal region of VirB7XAC2622 interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7XAC2622 has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7XAC2622 oligomerizes through interactions involving conserved residues in the N0 domain and residues 42–49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB7XAC2622 oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.

Highlights

  • Bacteria employ multiprotein secretion systems to translocate effector proteins or nucleoprotein complexes across the cell envelope where they modulate the bacterium’s interactions with the environment

  • We have determined the structure and studied the interactions of an unusually large VirB7 subunit (VirB7XAC2622) of the outer membrane pore of the Type IV secretion system found in the Xanthomonas genera of phytopathogens

  • Our results lead to the hypothesis that the VirB7XAC2622 globular domains can form an extra ring around the perimeter of the outer membrane pore and reveal deeper structural and evolutionary relationships among bacterial macromolecular secretion systems that have evolved to adopt a variety of functions, including structural modules in outer membrane pores, signal-transduction modules in TonB-dependent receptors and membrane-penetrating devices in T6SS and longtailed bacteriophages

Read more

Summary

Introduction

Bacteria employ multiprotein secretion systems to translocate effector proteins or nucleoprotein complexes across the cell envelope where they modulate the bacterium’s interactions with the environment. The type IV secretion systems (T4SSs) are ancestrally related to bacterial conjugation machines [3] and are able to translocate proteins and/or protein-DNA complexes to the extracellular milieu or the host interior, in many cases contributing to the ability of the bacterial pathogen to colonize the host and evade its immune system [4]. The Xac genome was sequenced and many potential virulence-related genes were identified [14], including an 18 kb chromosomal vir locus that codes for a T4SS [13,14,15]. Orthologous T4SSs have been identified in the closely related species Xanthomonas campestris pv. Vasculorum NCPPB702 [19], Xanthomonas campestris pv. The vir locus is incomplete in Xanthomonas campestris pv. The vir locus is incomplete in Xanthomonas campestris pv. vesicatoria [22] and is absent in four Xanthomonas oryzae strains

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call