Abstract

Recent experimental evidence has shown that steel joints exhibit a distinct change in their moment–rotation response under increasing temperature. In terms of cold design, the component method is currently the widely accepted procedure for the evaluation of the various design values. It is the purpose of the present paper to extend the component method to the prediction of the response of steel joints under fire loading. Using typical mechanical models consisting of extensional springs and rigid links, whereby the springs exhibit a non-linear force deformation response (here taken as a bi-linear approximation), an analytical procedure is proposed capable of predicting the moment–rotation response under fire conditions that incorporates the variation of yield stress and Young’s modulus of the various components as the temperature increases. An application to a cruciform flush end-plate beam-to-column steel joint is presented and compared to the experimental results obtained under various loading conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.