Abstract

In this paper, we develop a component Markov switching conditional volatility model based on the intraday range and evaluate its performance in forecasting the weekly volatility of the S&P 500 index. We compare the performance of the range-based Markov switching model with that of a number of well established return-based and range-based volatility models, namely EWMA, GARCH and FIGARCH models, the Markov Regime-Switching GARCH model of Klaassen (2002), the hybrid EWMA model of Harris and Yilmaz (2009), and the CARR model of Chou (2005). We show that the range-based Markov switching conditional volatility models produce more accurate out-of-sample forecasts, contain more information about true volatility, and exhibit similar or better performance when used for the estimation of value at risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.