Abstract

In the present work, an optimization method is proposed in order to produce innovative stiffening layouts for large stiffened cylindrical shell structures, as they appear in the aerospace industry. A component-based logic is applied on a ground mesh of structural elements (shells and beams), which was inspired by techniques of explicit topology optimization on solid elements (plane or tridimensional massive models). Geometric components, representing the layout of the stiffeners (i.e. location, shape and size), are projected onto the ground mesh, resulting in controlled sets of active beam elements. These sets constitute the structural representation of the stiffeners’ layout in the optimization model, which is then used to evaluate the objective and constraint functions of the optimization problem as well as their semi-analytical sensitivities. By applying the optimization method to compliance minimization problems, we show the efficiency and accuracy of the proposed method and its capability to handle a typical aerospace structure, such as a space-launcher part: a stiffened cylindrical shell in presence of an access hatch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.