Abstract

This paper presents a compliant, underactuated finger for the development of anthropomorphic robotic and prosthetic hands. The finger achieves both flexion/extension and adduction/abduction on the metacarpophalangeal joint, by using two actuators. The design employs moment arm pulleys to drive the tendon laterally and amplify the abduction motion, while also maintaining the flexion motion. Particular emphasis has been given to the analysis of the mechanism. The proposed finger has been fabricated with the hybrid deposition manufacturing technique and the actuation mechanism's efficiency has been validated with experiments that include the computation of the reachable workspace, the assessment of the exerted forces at the fingertip, the demonstration of the feasible motions, and the presentation of the grasping and manipulation capabilities. The proposed mechanism facilitates the collaboration of the two actuators to increase the exerted finger forces. Moreover, the extended workspace allows the execution of dexterous manipulation tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.