Abstract

A study is presented of a dynamic capacitive sensor configuration that is intended to impose minimal force and resistance to motion on the moving electrode. The aim is to enable the use of moving electrodes having arbitrary levels of compliance without suffering the adverse effects of large bias voltages such as pull-in instability. This configuration would facilitate the incorporation of highly compliant and thin electrode materials that present the least possible resistance to motion. This type of material is particularly useful for sensing sound. Measured results show that for the highly compliant acoustic sensor design examined here, a large bias voltage of 400 volts can be applied without influencing its motion. The electrical sensitivity to sound is found to be approximately 0.5 V/pascal, two orders of magnitude greater than typical acoustic sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.