Abstract
This paper presents an approach based on parameterized compliance for type synthesis of flexure mechanisms with serial, parallel, or hybrid topologies. The parameterized compliance matrices have been derived for commonly used flexure elements, which are significantly influenced by flexure parameters including material and geometric properties. Different parameters of flexure elements generate different degree of freedom (DOF) characteristic of types. Enlightened by the compliance analysis of flexure elements, a parameterization approach with detailed processes and steps is introduced in this paper to help analyze and synthesize flexure mechanisms with the case study as serial chains, parallel chains, and combination hybrid chains. For a hybrid flexure, the results of finite element (FE) modeling simulations are compared to analytical compliance elements characteristic. Under linear deformations, the maximum compliance errors of analytical models are less than 6% compared with the FE models. The final goal of this work is to provide a parameterized approach for type synthesis of flexure mechanisms, which is used to configure and change the parameters of flexure mechanisms to achieve the desired DOF requirements of types initially.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.