Abstract
Specific emitter identification (SEI) refers to distinguishing emitters using individual features extracted from wireless signals. The current SEI methods have proven to be accurate in tackling large labeled data sets at a high signal-to-noise ratio (SNR). However, their performance declines dramatically in the presence of small samples and a significant noise environment. To address this issue, we propose a complex self-supervised learning scheme to fully exploit the unlabeled samples, comprised of a pretext task adopting the contrastive learning concept and a downstream task. In the former task, we design an optimized data augmentation method based on communication signals to serve the contrastive conception. Then, we embed a complex-valued network in the learning to improve the robustness to noise. The proposed scheme demonstrates the generality of handling the small and sufficient samples cases across a wide range from 10 to 400 being labeled in each group. The experiment also shows a promising accuracy and robustness where the recognition results increase at 10–16% from 10–15 SNR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.