Abstract
A host algebra of a topological group G is a C*-algebra whose representations are in one-to-one correspondence with certain continuous unitary representations of G. In this paper we present an approach to host algebras for infinite dimensional Lie groups which is based on complex involutive semigroups. Any locally bounded absolute value α on such a semigroup S leads in a natural way to a C*-algebra C*(S,α), and we describe a setting which permits us to conclude that this C*-algebra is a host algebra for a Lie group G. We further explain how to attach to any such host algebra an invariant weak-*-closed convex set in the dual of the Lie algebra of G enjoying certain nice convex geometric properties. If G is the additive group of a locally convex space, we describe all host algebras arising this way. The general non-commutative case is left for the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.