Abstract

ABSTRACT MACS J0600.1-2008 (MACS0600) is an X-ray-luminous, massive galaxy cluster at $z_{\mathrm{d}}=0.43$, studied previously by the REionization LensIng Cluster Survey and ALMA Lensing Cluster Survey projects which revealed a complex, bimodal mass distribution and an intriguing high-redshift object behind it. Here, we report on the results of a combined analysis of the extended strong lensing (SL), X-ray, Sunyaev–Zeldovich (SZ), and galaxy luminosity-density properties of this system. Using new JWST and ground-based Gemini-N and Keck data, we obtain 13 new spectroscopic redshifts of multiply-imaged galaxies and identify 12 new photometric multiple-image systems and candidates, including two multiply-imaged $z\sim 7$ objects. Taking advantage of the larger areal coverage, our analysis reveals an additional bimodal, massive SL structure which we measure spectroscopically to lie adjacent to the cluster and whose existence was implied by previous SL-modelling analyses. While based in part on photometric systems identified in ground-based imaging requiring further verification, our extended SL model suggests that the cluster may have the second-largest critical area and effective Einstein radius observed to date, $A_{\mathrm{crit}}\simeq 2.16\, \mathrm{arcmin}^2$ and $\theta _{\mathrm{E}}=49.7^{\prime \prime }\pm 5.0^{\prime \prime }$ for a source at $z_{\mathrm{s}}=2$, enclosing a total mass of $M(\lt \theta _{\mathrm{E}})=(4.7\pm 0.7)\times 10^{14}\, \mathrm{M}_{\odot }$. These results are also supported by the galaxy luminosity distribution, and the SZ and X-ray data. Yet another, probably related massive cluster structure, discovered in X-rays 5 arcmin (1.7 Mpc) further north, suggests that MACS0600 is part of an even larger filamentary structure. This discovery adds to several recent detections of massive structures around SL galaxy clusters and establishes MACS0600 as a prime target for future high-redshift surveys with JWST.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.