Abstract
Multi-source information fusion has attracted considerable attention in the few past years and plays a great role in real applications. However, the uncertainty or conflict will make the fusion results unreasonable. Furthermore, the information may be collected in the form of complex number that cannot be processed by existing methods. In this article, to handle the above issues, the complex evidence theory (CET) is exploited. CET is the generalization of Dempster–Shafer evidence theory, where the mass function is modeled by complex number, called complex mass function (CMF). In order to deal with multi-source information fusion from the perspective of the complex plane, a new Complex Jensen–Shannon divergence (CJS divergence) is presented in this article. The proposed CJS divergence can effectively measure the conflict between two CMFs, and it satisfies the properties of boundedness, symmetry and nondegeneracy. In addition, for a better combination result, we have adjusted the complex Dempster’s rule of combination, which is called the reinforced complex evidence combination rule (RCECR). Then an algorithm for multi-source information fusion is proposed based on the CJS divergence and the RCECR. Some numerical examples and two applications in target identification and medical diagnosis illustrate the effectiveness of the new approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.