Abstract

Limited information is available if plant growth promoting bacteria (PGPB) can promote the growth of fruit crops through improvements in soil fertility. This study aimed to evaluate the capacity of PGPB, identified by phenotypic and 16S rRNA sequencing from a vegetable purple soil in Chongqing, China, to increase soil nitrogen (N), phosphorus (P), and potassium (K) availability and growth of kiwifruit (Actinidia chinensis). In doing so, three out of 17 bacterial isolates with a high capacity of N2-fixation (Bacillus amyloliquefaciens, XD-N-3), P-solubilization (B. pumilus, XD-P-1) or K-solubilization (B. circulans, XD-K-2) were mixed as a complex bacterial inoculant. A pot experiment then examined its effects of this complex inoculant on soil microflora, soil N2-fixation, P- and K-solubility and kiwifruit growth under four treatments. These treatments were (1) no-fertilizer and no-bacterial inoculant (Control), (2) no-bacterial inoculant and a full-rate of chemical NPK fertilizer (CF), (3) the complex inoculant (CI), and (4) a half-rate CF and full CI (1/2CF+CI). Results indicated that significantly greater growth of N2-fixing, P- and K-solubilizing bacteria among treatments ranked from greatest to least as under 1/2CF+CI ≈ CI > CF ≈ Control. Though generally without significant treatment differences in soil total N, P, or K, significantly greater soil available N, P, or K among treatments was, respectively, patterned as under 1/2CF+CI ≈ CI > CF ≈ Control, under 1/2CF+CI > CF > CI > Control or under 1/2CF+CI > CF ≈ CI > Control, indicating an improvement of soil fertility by this complex inoculant. In regards to plant growth, significantly greater total plant biomass and total N, P, and K accumulation among treatments were ranked as 1/2CF+CI ≈ CI > CF > Control. Additionally, significantly greater leaf polyphenol oxidase activity ranked as under CF > 1/2CF+CI ≈ Control ≈ CI, while leaf malondialdehyde contents as under Control > CI ≈ CF > 1/2CF+CI. In short, the applied complex inoculant is able to improve available soil N, P, and K and kiwifruit growth. These results demonstrate the potential of using a complex bacterial inoculant for promoting soil fertility and plant growth.

Highlights

  • High inputs of chemical nitrogen (N), phosphorus (P), and/or potassium (K) fertilizers have been globally used to enhance crop growth and productivity

  • Three isolates identified by their N2-fixing, and Pand K-solubilizing capacity as XD-N-3, XD-P-1, and XD-K-2 through phenotypic identification and 16s rRNA sequencing, were combined to form a complex inoculant that was used in this study

  • Three selected plant growth-promoting (PGP) bacterial isolates, B. amyloliquefaciens XDN-3, B. pumilus XD-P-1, and B. circulans XD-K-2, which were isolated from a purple soil, exhibited a strong capacity to fix N2, and solubilize P and K, respectively

Read more

Summary

Introduction

High inputs of chemical nitrogen (N), phosphorus (P), and/or potassium (K) fertilizers have been globally used to enhance crop growth and productivity. Plant growth-promoting bacteria are free-living soil bacteria that can fix or solubilize essential elements in the soil, induce plant host resistance to pathogens, and aggressively colonize the root rhizosphere. This results in promotion of better nutrient uptake and thereby enhances plant growth and yield (Chen et al, 2006; Lugtenberg and Kamilova, 2009; Tailor and Joshi, 2014; Zhang and Kong, 2014). Information is very limited in the effects of soil microbial inoculants in fruit plantations

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call