Abstract

The existing methods for water-level recognition often suffer from inaccurate readings in complex environments, which limits their practicality and reliability. In this paper, we propose a novel approach that combines an improved version of the YOLOv5m model with contextual knowledge for water-level identification. We employ the adaptive threshold Canny operator and Hough transform for skew detection and correction of water-level images. The improved YOLOv5m model is employed to extract the water-level gauge from the input image, followed by refinement of the segmentation results using contextual priors. Additionally, we utilize a linear regression model to predict the water-level value based on the pixel height of the water-level gauge. Extensive experiments conducted in real-world environments encompassing daytime, nighttime, occlusion, and lighting variations demonstrate that our proposed method achieves an average error of less than 2 cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.