Abstract

Cardiac conduction disease is a clinically and genetically heterogeneous disorder characterized by defects in electrical impulse generation and conduction and is associated with sudden cardiac death. We studied a 4-generation family with autosomal dominant progressive cardiac conduction disease, including atrioventricular conduction block and sinus bradycardia, atrial arrhythmias, and sudden death. Genome-wide linkage analysis mapped the disease locus to chromosome 1p22-q21. Multiplex ligation-dependent probe amplification analysis of the LMNA gene, which encodes the nuclear-envelope protein lamin A/C, revealed a novel gene rearrangement involving a 24-bp inversion flanked by a 3.8-kb deletion upstream and a 7.8-kb deletion downstream. The presence of short inverted sequence homologies at the breakpoint junctions suggested a mutational event involving serial replication slippage in trans during DNA replication. We identified for the first time a complex LMNA gene rearrangement involving a double deletion in a 4-generation Dutch family with progressive conduction system disease. Our findings underscore the fact that if conventional polymerase chain reaction-based direct sequencing approaches for LMNA analysis are negative in suggestive pedigrees, mutation detection techniques capable of detecting gross genomic lesions involving deletions and insertions should be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call