Abstract
Multi-adjoint logic programs generalise monotonic and residuated logic programs in that simultaneous use of several implications in the rules and rather general connectives in the bodies are allowed. As our approach has continuous fixpoint semantics, in this work, a procedural semantics is given for the paradigm of multi-adjoint logic programming and a completeness result is proved. Some applications which could benefit from this theoretical approach, such as threshold computation, fuzzy databases and general fuzzy resolution, are commented on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.