Abstract

Cardiac magnetic resonance (CMR) imaging is a valuable modality in the diagnosis and characterization of cardiovascular diseases, since it can identify abnormalities in structure and function of the myocardium non-invasively and without the need for ionizing radiation. However, in clinical practice, it is commonly acquired as a collection of separated and independent 2D image planes, which limits its accuracy in 3D analysis. This paper presents a completely automated pipeline for generating patient-specific 3D biventricular heart models from cine magnetic resonance (MR) slices. Our pipeline automatically selects the relevant cine MR images, segments them using a deep learning-based method to extract the heart contours, and aligns the contours in 3D space correcting possible misalignments due to breathing or subject motion first using the intensity and contours information from the cine data and next with the help of a statistical shape model. Finally, the sparse 3D representation of the contours is used to generate a smooth 3D biventricular mesh. The computational pipeline is applied and evaluated in a CMR dataset of 20 healthy subjects. Our results show an average reduction of misalignment artefacts from 1.82 ± 1.60 mm to 0.72 ± 0.73 mm over 20 subjects, in terms of distance from the final reconstructed mesh. The high-resolution 3D biventricular meshes obtained with our computational pipeline are used for simulations of electrical activation patterns, showing agreement with non-invasive electrocardiographic imaging. The automatic methodologies presented here for patient-specific MR imaging-based 3D biventricular representations contribute to the efficient realization of precision medicine, enabling the enhanced interpretability of clinical data, the digital twin vision through patient-specific image-based modelling and simulation, and augmented reality applications.This article is part of the theme issue ‘Advanced computation in cardiovascular physiology: new challenges and opportunities’.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.