Abstract
The automatic ship detection method for thermal infrared remote sensing images (TIRSIs) is of great significance due to its broad applicability in maritime security, port management, and target searching, especially at night. Most ship detection algorithms utilize manual features to detect visible image blocks which are accurately cut, and they are limited by illumination, clouds, and atmospheric strong waves in practical applications. In this paper, a complete YOLO-based ship detection method (CYSDM) for TIRSIs under complex backgrounds is proposed. In addition, thermal infrared ship datasets were made using the SDGSAT-1 thermal imaging system. First, in order to avoid the loss of texture characteristics during large-scale deep convolution, the TIRSIs with the resolution of 30 m were up-sampled to 10 m via bicubic interpolation method. Then, complete ships with similar characteristics were selected and marked in the middle of the river, the bay, and the sea. To enrich the datasets, the gray value stretching module was also added. Finally, the improved YOLOv5 s model was used to detect the ship candidate area quickly. To reduce intra-class variation, the 4.23–7.53 aspect ratios of ships were manually selected during labeling, and 8–10.5 μm ship datasets were constructed. Test results show that the precision of the CYSDM is 98.68%, which is 9.07% higher than that of the YOLOv5s algorithm. CYSDM provides an effective reference for large-scale, all-day ship detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.