Abstract

It is shown that preconditioning of experimental X‐ray computed tomography (XCT) data is critical to achieve high‐precision segmentation scores. The challenging experimental XCT datasets and deep convolutional neural networks (DCNNs) are used that are trained with low‐resemblance synthetic XCT data. The material used is a 6‐phase Al–Si metal matrix composite‐reinforced with ceramic fibers and particles. To achieve generalization, in our past studies, specific data augmentation techniques were proposed for the synthetic XCT training data. In addition, two toolsets are devised: (1) special 3D DCNN architecture (3D Triple_UNet), slicing the experimental XCT data from multiple views (MultiView Forwarding), the i.S.Sy.Da.T.A. iterative segmentation algorithm, and (2) nonlocal means (NLM) conditioning (filtering) for the experimental XCT data. This results in good segmentation Dice scores across all phases compared to more standard approaches (i.e., standard UNet architecture, single view slicing, standard single training, and NLM conditioning). Herein, the NLM filter is replaced with the deep conditioning framework BAM SynthCOND introduced in a previous publication, which can be trained with synthetic XCT data. This leads to a significant segmentation precision increase for all phases. The proposed methods are potentially applicable to other materials and imaging techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.