Abstract

This paper presents a general analysis of all the quartic equations with real coefficients and multiple roots; this analysis revealed some unknown formulae to solve each kind of these equations and some precisions about the relation between these ones and the Resolvent Cubic; for example, it is well-known that any quartic equation has multiple roots whenever its Resolvent Cubic also has multiple roots; however, this analysis reveals that any non-biquadratic quartic equation and its Resolvent Cubic always have the same number of multiple roots; additionally, the four roots of any quartic equation with multiple roots are real whenever some specific forms of its Resolvent Cubic have three non-negative real roots. This analysis also proves that any method to solve third-degree equations is unnecessary to solve quartic equations with multiple roots, despite the existence of the Resolvent Cubic; finally, here is developed a generalized variation of the Ferrari Method and the Descartes Method, which help to avoid complex arithmetic operations during the resolution of any quartic equation with real coefficients, even though this equation has non-real roots; and a new, more simplified form of the discriminant of the quartic equations is also featured here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call