Abstract

This paper presents a complete multiagent framework for dynamic job shop scheduling, with an emphasis on robustness and adaptability. It provides both a theoretical basis and some experimental justifications for such a framework: a job dispatching procedure for a completely reactive scheduling approach, combining real-time and predictive decision making. It resolves various disruptions as flexibly as dispatching rules while providing more stability. It is ready to be implemented in a distributed environment where agents have minimum global information thereby improving system fault tolerance. Computational experiments on dynamic job arrivals provide the experimental justification of the framework. First, a comparison of computational results on unpredictable job arrivals among the presented framework and commonly used dispatching rules is presented to show the effectiveness and robustness of the developed framework. Then, a comparison of the computational results among four cases of dynamic job arrivals is presented to demonstrate the effects of making full use of available uncertain information about disruptions using this framework for the enhancement of scheduling robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.