Abstract

PurposeFor precisely presenting the swimming behavior of fish robots underwater and the practical implementation purpose, this paper aims to investigate a well-formulated fish robot model which integrates the nonlinear rigid body dynamics, kinematics and models of actuators.Design/methodology/approachThis fish robot model is mainly built up by three basic parts: a balance mechanism, a four-links vibrator and a caudal fin. In the fish robot’s head, there is a balance mechanism used to control the rotations in pitch and roll directions of the fish robot by moving two movable masses. The four-links vibrator with three active joints actuated by DC motors is designed to vibrate the fish’s body. In the end of the fish robot body, a caudal fin which connects with the passive joint is developed to generate hydrodynamic thrust forces to propel the fish robot.FindingsFrom the real stability tests and control verification, it is obvious that this proposed model can precisely present the swimming behavior of fish robots and possesses the potential to develop a fish-like robotic prototype.Originality/valueA well-formulated model with dynamics of actuators is integrated for presenting the swimming behavior of carangiform locomotion type fish robots in this investigation. From the simulation results and the practical test of a real fish robot, the feasibility of this proposed model for building up real fish robots can be proven, and this proposed model is accurate enough to effectively present the swimming behavior of fish robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.