Abstract

A complete, continuous transition from discrete macroions to blackberry structures, and then back to discrete macroions, is reported for the first time in the system of {Mo132}/water/acetone, with {Mo132} (full formula (NH4)42[Mo132O372(CH3COO)30(H2O)72].ca.300H2O.ca.10CH3COONH4) as the C60-like anionic polyoxomolybdate molecular clusters. Laser light scattering studies reveal the presence of the self-assembled {Mo132} blackberry structures in water/acetone mixed solvents containing 3 vol % to 70 vol % acetone, with the average hydrodynamic radius (Rh) of blackberries ranging from 45 to 100 nm with increasing acetone content. Only discrete {Mo132} clusters are found in solutions containing <3 vol % and >70 vol % acetone. The complete discrete macroion (cluster)-blackberry-discrete macroion transition helps to identify the driving forces behind the blackberry formation, a new type of self-assembly process. The charge density on the macroions is found to greatly affect the blackberry formation and dissociation, as the counterion association is very dominant around blackberries. The transitions between single {Mo132} clusters and blackberries, and between the blackberries with different sizes, are achieved by only changing the solvent quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.