Abstract

The chemical functionalization of endohedral metallofullerenes (EMFs) has aroused considerable interest due to the possibility of synthesizing new species with potential applications in materials science and medicine. Experimental and theoretical studies on the reactivity of endohedral metallofullerenes are scarce. To improve our understanding of the endohedral metallofullerene reactivity, we have systematically studied with DFT methods the Diels-Alder cycloaddition between s-cis-1,3-butadiene and practically all X@I(h)-C80 EMFs synthesized to date: X=Sc3N, Lu3N, Y3N, La2, Y3, Sc3C2, Sc4C2, Sc3CH, Sc3NC, Sc4O2 and Sc4O3. We have studied both the thermodynamic and kinetic regioselectivity, taking into account the free rotation of the metallic cluster inside the fullerene. This systematic study has been made possible through the use of the frozen cage model (FCM), a computationally cheap approach to accurately predicting the exohedral regioselectivity of cycloaddition reactions in EMFs. Our results show that the EMFs are less reactive than the hollow I(h)-C80 cage. Except for the Y3 cluster, the additions occur predominantly at the [5,6] bond. In many cases, however, a mixture of the two possible regioisomers is predicted. In general, [6,6] addition is favored in EMFs that have a larger charge transfer from the metal cluster to the cage or a voluminous metal cluster inside. The present guide represents the first complete and exhaustive investigation of the reactivity of I(h)-C80-based EMFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.