Abstract

In this paper, we establish the existence of nontrivial ground-state solutions for a coupled nonlinear Schrödinger system$-\Delta u_j+ u_j=\sum\limits_{i=1}^mb_{ij}u_i^2u_j, \quad\text{in}\ \mathbb{R}^n,\\ u_j(x)\to 0\ \text{as}\ |x|\ \to \infty, \quad j=1,2,\cdots, m,$where $n=1, 2, 3, m\geq 2$ and $b_{ij}$ are positive constants satisfying $b_{ij}=b_{ji}.$ By nontrivial we mean a solution that has all components non-zero. Due to possible systems collapsing it is important to classify ground state solutions. For $m=3$, we get a complete picture that describes whether nontrivial ground-state solutions exist or not for all possible cases according to some algebraic conditions of the matrix $B = (b_{ij})$. In particular, there is a nontrivial ground-state solution provided that all coupling constants $b_{ij}, i\neq j$ are sufficiently large as opposed to cases in which any ground-state solution has at least a zero component when $b_{ij}, i\neq j$ are all sufficiently small. Moreover, we prove that any ground-state solution is synchronized when matrix $B=(b_{ij})$ is positive semi-definite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call