Abstract

We construct a resource theory of sharpness for finite-dimensional positive operator-valued measures (POVMs), where the sharpness−non−increasing operations are given by quantum preprocessing channels and convex mixtures with POVMs whose elements are all proportional to the identity operator. As required for a sound resource theory of sharpness, we show that our theory has maximal (i.e., sharp) elements, which are all equivalent, and coincide with the set of POVMs that admit a repeatable measurement. Among the maximal elements, conventional non-degenerate observables are characterized as the canonical ones. More generally, we quantify sharpness in terms of a class of monotones, expressed as the EPR–Ozawa correlations between the given POVM and an arbitrary reference POVM. We show that one POVM can be transformed into another by means of a sharpness-non-increasing operation if and only if the former is sharper than the latter with respect to all monotones. Thus, our resource theory of sharpness is complete, in the sense that the comparison of all monotones provides a necessary and sufficient condition for the existence of a sharpness-non-increasing operation between two POVMs, and operational, in the sense that all monotones are in principle experimentally accessible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.