Abstract
A theorem of Hardy characterizes the Gauss kernel (heat kernel of the Laplacian) on ℝ from estimates on the function and its Fourier transform. In this article we establisha full group version of the theorem for SL2(ℝ) which can accommodate functions with arbitraryK-types. We also consider the ‘heat equation’ of the Casimir operator, which plays the role of the Laplacian for the group. We show that despite the structural difference of the Casimir with the Laplacian on ℝn or the Laplace—Beltrami operator on the Riemannian symmetric spaces, it is possible to have a heat kernel. This heat kernel for the full group can also be characterized by Hardy-like estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.