Abstract

Diabetic peripheral neuropathy represents one of the common long-terms complications that effect about fifty percentage?of diabetes patients. The habitual diagnosis tool based on nerve conduction study that examine the nerve damage and classify the patient status into normal and diabetic peripheral neuropathy with degree of severity without considering the effect on skeletal muscle and take on patient data. A complementary diagnostic tool proposed, in this study integrates the patient’s data including body mass index, age and duration of diabetic, average blood glucose levels, nerve conduction study that involves amplitude and latency of peroneal and tibial nerves and muscle ultrasound alongside the machine learning algorithms to facilitate the clinicians for a precise diagnosis. A group of control and diabetic patients utilized to gather the data with calculating the muscle thickness and statistical properties from the gray-level ultrasound images of six skeletal muscles. Support vector machine, naïve bayes, ensemble of bagged tree and artificial neural network supervised machine learning algorithms categorize each class with a high classification accuracy, 98.1% for tibialis anterior with naïve bayes algorithm. The outcomes of this study show a promising complementary diagnostic tool that will help the clinicians to perform an exact diagnosis and disclose the side effect on both nerves and muscles of diabetic patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call