Abstract
Industrial knitting machines can produce finely detailed, seamless, 3D surfaces quickly and without human intervention. However, the tools used to program them require detailed manipulation and understanding of low-level knitting operations. We present a compiler that can automatically turn assemblies of high-level shape primitives (tubes, sheets) into low-level machine instructions. These high-level shape primitives allow knit objects to be scheduled, scaled, and otherwise shaped in ways that require thousands of edits to low-level instructions. At the core of our compiler is a heuristic transfer planning algorithm for knit cycles, which we prove is both sound and complete. This algorithm enables the translation of high-level shaping and scheduling operations into needle-level operations. We show a wide range of examples produced with our compiler and demonstrate a basic visual design interface that uses our compiler as a backend.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.