Abstract

Motivated by applications to proof assistants based on dependent types, we develop and prove correct a strong reducer and ß-equivalence checker for the λ-calculus with products, sums, and guarded fixpoints. Our approach is based on compilation to the bytecode of an abstract machine performing weak reductions on non-closed terms, derived with minimal modifications from the ZAM machine used in the Objective Caml bytecode interpreter, and complemented by a recursive "read back" procedure. An implementation in the Coq proof assistant demonstrates important speed-ups compared with the original interpreter-based implementation of strong reduction in Coq.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.