Airborne monitoring of Mount St. Helens by the USGS began in May 1980 for sulfur dioxide emissions and in July 1980 for carbon dioxide emissions. A correlation spectrometer, or COSPEC, was used to measure sulfur dioxide in Mount St. Helens' plume. The upward-looking COSPEC was mounted in a fixed-wing aircraft and flown below and at right angles to the plume. Typically, three to six traverses were made underneath the plume to determine the SO2 burden (concentration x pathlength) within a cross-section of the plume. Knowing the burden along with the plume width and plume velocity (assumed to be the same as ambient wind speed), we could then calculate the emission rate of SO2. The use of correlation spectroscopy for determining the sulfur dioxide output of volcanoes is well established and the technique has been discussed in detail by a number of investigators (Malinconico, 1979; Casadevall and others, 1981; Stoiber and others, 1983). Carbon dioxide in the Mount St. Helens plume was measured by an infrared spectrometer tuned to the 4.26 um CO2 absorption band. An external sample tube was attached to the fuselage of a twin-engine aircraft to deliver outside air to the gas cell of the spectrometer. The aircraft was then flown at several different elevations through the plume at right angles to plume trajectory to define plume area and carbon dioxide concentration in a vertical cross-section of the plume. These two parameters along with the density of CO2 for the altitude of the plume and the plume velocity (assumed as above to be equal to ambient wind speed) were then used to calculate the CO2 emission rate (Harris and others, 1981).

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call