Abstract
An electrochemical immunosensor was developed for ultrasensitive detection of microcystin-LR in water. MIL-101, a porous metal-organic frameworks (MOFs) material based on trivalent chromium skeleton were synthesized by hydrothermal synthesis method, and loaded with Au nanoparticles (Au NPs) to prepare Au NPs@MIL-101 composite materials which were used as a marker to label anti microcystin-LR (Anti-MC-LR). The composite materials have strong catalytic properties to the oxidation of ascorbic acid. Anti-MC-LR was immobilized on glassy carbon electrode surface using electrodeposition graphene oxide (GO) as an immobilization matrix to construct a competitive microcystin-LR immunosensor. The electrochemical immunosensor display linear relationship in the range of 0.05 ng/mL−75 μg/mL with linear correlation coefficient of 0.9951 and detection limit of 0.02 ng/mL (S/N = 3). This sensor was used to detect microcystin-LR in the water sample. The recovery was 102.43%, which is satisfied. The good testing results indicate the sensor has a great prospect in practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.