Abstract

This paper discusses a Competitive Layer Model (CLM) for a class of recurrent Cellular Neural Networks (CNNs) from continuous-time type to discrete-time type. The objective of the CLM is to partition a set of input features into salient groups. The complete convergence of such networks in continuous-time type has been discussed first. We give a necessary condition, and a necessary and sufficient condition, which allow the CLM performance existence in our networks. We also discuss the properties of such networks of discrete-time type, and propose a novel CLM iteration method. Such method shows similar performance and storage allocation but faster convergence compared with the previous CLM iteration method (Wersing, Steil, & Ritter, 2001a). Especially for a large scale network with many features and layers, it can significantly reduce the computing time. Examples and simulation results are used to illustrate the developed theory, the comparison between two CLM iteration methods, and the application in image segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.