Abstract
The understanding of protein–protein interactions is crucial in order to generate a second level of functional genomic analysis in human disease. Within a cellular microenvironment, protein–protein interactions generate new functions that can be defined by single or multiple modes of protein interactions. We outline here the clinical importance of targeting of the Nme-1 (NDPK-A)–Prune-1 protein complex in cancer, where an imbalance in the formation of this protein–protein complex can result in inhibition of tumor progression. We discuss here recent functional data using a small synthetic competitive cell-permeable peptide (CPP) that has shown therapeutic efficacy for impairing formation of the Nme-1–Prune-1 protein complex in mouse preclinical xenograft tumor models (e.g., breast, prostate, colon, and neuroblastoma). We thus believe that further discoveries in the near future related to the identification of new protein–protein interactions will have great impact on the development of new therapeutic strategies against various cancers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.